\qquad

ECS 315: Probability and Random Processes 2018/1

$$
\text { MW } 1 \text { - Due: August 28, } 4 \mathrm{PM}
$$

Lecturer: Prapun Suksompong, Ph.D.

Instructions

(a) This assignment has 2 pages.
(b) (1 pt) Work and write your answers directly on this sheet (not on another blank sheet of paper). Hard-copies are distributed in class.
(c) (1 pt) Write your first name and the last three digits of your student ID in the spaces provided on the upper-right corner of this page.
(d) (8 pt) Try to solve all problems.
(e) Late submission will be heavily penalized.

Problem 1. (Set Theory) For this problem, only answers are needed; you don't have to describe your solution.
(a) In the Venn diagrams below,

shade the region that corresponds to the following events:
(i) A^{c}
(ii) $A \cap B$
(iii) $(A \cap B) \cup C$
(iv) $(B \cup C)^{c}$
(v) $(A \cap B)^{c} \cup C$
[Montgomery and Runger, 2010, Q2-19]
(b) Let $\Omega=\{0,1,2,3,4,5,6,7\}$, and put $A=\{1,2,3,4\}, B=\{3,4,5,6\}$, and $C=\{5,6\}$. Find
(i) $A \cup B$
(ii) $A \cap B$
(iii) $A \cap C$
(iv) A^{c}
(v) $B \backslash A$

Problem 2. For this problem, only answers are needed; you don't have to provide explanation.

For each of the sets provided in the first column of the table below, indicate (by putting a $\mathrm{Y}(\mathrm{es})$ or an $\mathrm{N}(\mathrm{o})$ in the appropriate cells of the table) whether it is "finite", "infinite", "countable", "countably infinite", "uncountable".

Sets	Finite	Infinite	Countable	Countably Infinite	Uncountable
$\{1\}$					
$\{1,2\}$					
$[1,2]$					
$[1,2] \cup[-1,0]$					
$\{1,2,3,4\}$					
the power set of $\{1,2,3,4\}$					
the set of all real numbers					
the set of all real- valued x satisfy- ing cos $x=0$					
the set of all in- tegers					
$(-\infty, 0]$					
$(-\infty, 0] \cap[0,+\infty)$					

