


Instructions

- (a) This assignment has 2 pages.
- (b) (1 pt) Work and write your answers **directly on this sheet** (not on another blank sheet of paper). Hard-copies are distributed in class.
- (c) (1 pt) Write your first name and the last three digits of your student ID in the spaces provided on the upper-right corner of this page.
- (d) (8 pt) Try to solve all problems.
- (e) Late submission will be heavily penalized.

Problem 1. (Set Theory) For this problem, only answers are needed; you don't have to describe your solution.

(a) In the Venn diagrams below,

shade the region that corresponds to the following events:

- (i) A^c
- (ii) $A \cap B$
- (iii) $(A \cap B) \cup C$
- (iv) $(B \cup C)^c$
- (v) $(A \cap B)^c \cup C$

[Montgomery and Runger, 2010, Q2-19]

- (b) Let $\Omega = \{0, 1, 2, 3, 4, 5, 6, 7\}$, and put $A = \{1, 2, 3, 4\}$, $B = \{3, 4, 5, 6\}$, and $C = \{5, 6\}$. Find
 - (i) $A \cup B$
 - (ii) $A \cap B$
 - (iii) $A \cap C$
 - (iv) A^c
 - (v) $B \setminus A$

Problem 2. For this problem, only answers are needed; you don't have to provide explanation.

For each of the sets provided in the first column of the table below, indicate (by putting a Y(es) or an N(o) in the appropriate cells of the table) whether it is "finite", "infinite", "countable", "countably infinite", "uncountable".

Sets	Finite	Infinite	Countable	Countably Infinite	Uncountable
{1}					
$\{1,2\}$					
[1,2]					
$[1,2] \cup [-1,0]$					
$\{1, 2, 3, 4\}$					
the power set of					
$\begin{array}{ } \{1,2,3,4\} \\ \hline \text{the set of all real} \end{array}$					
numbers the set of all real-					
valued x satisfy-					
$\frac{\log \cos x = 0}{\text{the set of all in-}}$					
the set of all in-					
tegers					
$(-\infty,0]$					
$(-\infty,0]\cap[0,+\infty)$					